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ABSTRACT

We present a new way of using spherical harmonics expansions to solve transport problems. Our ap-
proach uses filtered expansions to give positive solutions and reduce wave effects in the solutions. We
present two specific filters: one based on maintaining positivity in a P1 expansion, and the other that
is a function of the total cross-section and the order of the expansion. We compare solutions using our
filtered expansions to the standard spherical harmonics expansions, Monte Carlo, diffusion, discrete or-
dinates, and analytic transport solutions. These numerical results suggest that our filtered expansions
give solutions that are comparable to other methods in terms of accuracy. Additionally, we point out how
filtered spherical harmonics expansions could be improved.
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1. INTRODUCTION

Spherical harmonics expansions are one of the ways of treating the angular variable in the first-order form
of the neutral particle transport equation [1, 2]. These expansions can be shown to be an asymptotic limit
of the transport equation [3]. To get numerical solutions, the expansion must be truncated at some order,
however, when scattering from the material medium is small, the truncated expansion can give nonphysical
osciallations in the solution. These oscillations are the result of the spherical harmonics being the expansion
that best approximates the transport solution in a least-squared sense [4]. These oscillations can cause the
solution to become negative and make multiphysics simulations fail [5–7]. Moreover, it can be proven
that for a given order of spherical harmonics expansion there exists a problem where the solution becomes
negative [7].

The goal of this study is to eliminate the oscillations in the solution to the spherical harmonics (PN ) equa-
tions and ensure that the solution is positive. We accomplish this by using filtered spherical harmonics
expansions. These filters are based on finding the PN expansion that minimizes the L2 norm of the error
subject to a cost function related to the second angular derivative of the expansion. Such a filter is analagous
to an artificial viscosity used in the numerical solution of hyperbolic conservation laws. Adding a cost func-
tion to the PN expansion gives a general form for a filter with the strength of the filter remaining a free
parameter. We give two prescriptions for choosing this filter strength. The first takes the P1 expansion and
using the filter guarantees that this expansion is positive in the angular flux, in a similar manner to a slope
limiter. The other filter chooses the filter strength based on the order of the expansion and the size of the total
macroscopic cross-section of the material. As the order of expansion or the cross-section becomes larger,
the filter strength decreases. Though we give two recipes for a filter, we do not assert that these are optimal.
In fact, we suggest ways to create better filters.



R.G. McClarren, C.D. Hauck, and R.B. Lowrie

In the following section we present the theory of filtered spherical harmonics expansions. For much of this
section we follow the derivations given by Boyd [4]. We then concoct two filters and discuss their properties
in Sec. 3. Section 4 discusses the PN equations and how we solve them numerically. Numerical results are
presented in Sec. 5, followed by a conclusions section.

2. FILTERED SPHERICAL HARMONICS EXPANSIONS

The spherical harmonics expansion takes the angular flux, ψ(x, Ω̂, v, t), and expands the angular variable
Ω̂ = (µ, ϕ) in terms of spherical harmonics functions

ψ(x, Ω̂, v, t) =
∞
∑

l=0

l
∑

m=−l

Y m
l (Ω̂)ψm

l (x, v, t). (1)

where the spherical harmonics functions are given by

Y m
l = (−1)m

√

2l + 1

4π

(l −m)!

(l +m)!
Pm

l (µ)eimϕ, (2)

Pm
l (µ) are the associated Legendre functions. The expansion coefficients in Eq. (1) are given by

ψm
l (x, v, t) =

∫

4π
Ȳ m

l (Ω̂)ψ(x, Ω̂, v, t) dΩ̂. (3)

The expansion in Eq. (1) must be made finite so that numerical computation can be performed. The most
common means of making Eq. (1) finite is to truncate the series above a certain value of l = N ,

ψm
l = 0 l > N. (4)

Though this truncation is straightforward, it causes the solution to transport problems to have oscillations.
Indeed, Boyd, when discussing truncated spherical harmonics expansions for general problems exclaims
[4], “Truncating a [spherical harmonics] series is a rather stupid idea.” These oscillations can be explained
by the fact that the spherical harmonics expansion is the minimizer of the functional

J =

∫

4π

(

ψ(x, Ω̂, v, t) −
∞
∑

l=0

l
∑

m=−l

Y m
l (Ω̂)ψm

l (x, v, t)

)2

dΩ̂. (5)

This functional can allow large oscillations about the true solution because it minimizes the square of the
error.

Following Boyd [4], one can change the functional that is minimized to

J =

∫

4π

(

ψ(x, Ω̂, v, t) −
∞
∑

l=0

l
∑

m=−l

Y m
l (Ω̂)ψ̃m

l (x, v, t)

)2

dΩ̂

+ α

∫

4π

(

∞
∑

l=0

l
∑

m=−l

∇2k
Ω̂
Y m

l (Ω̂)ψ̃m
l (x, v, t)

)2

dΩ̂. (6)
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In this new functional ∇
Ω̂

is the gradient operator with respect to Ω̂ and α > 0 is a parameter. This filter is,
in a sense, adding artificial viscosity to the expansion: oscillations make this new term in the cost function
large.

We will now find the new expansion coefficients, ψ̃m
l . Noting that the spherical harmonics are eigenfuctions

of the Laplacian operator on the sphere,

∇2

Ω̂
Y m

l = −l(l + 1)Y m
l , (7)

one can show that
ψ̃m

l =
ψm

l

1 + αl2k(l + 1)2k
. (8)

Therefore, the filtered expansion forces the expansion coefficients to decrease with increasing l. These
filters are also conservative in that they do not change the magnitude of ψ0

0 meaning that the scalar flux is
unchanged. There still is the free parameter α that we must specify. In this study we suggest two ways of
defining α, though we note that further research probably will uncover better filters.

3. TWO FILTERS

3.1. Strictly Positive P1 Reconstruction

The first filter that we describe is based on the P1 expansion of the angular flux. This expansion is

ψ =
1

2
√
π
ψ0

0 +
1

2

√

3

π
ψ0

1µ+

√

3

2π
ψ1

1e
−iϕ
√

1 − µ2, (9)

where we have used the relation that ψm
l = (−1)mψ−m

l [8]. Notice that this reconstruction can be negative;
when

∣

∣ψ0
1

∣

∣ >
ψ0

0√
3
, (10)

or
∣

∣ψ1
1

∣

∣ >
ψ0

0√
6
, (11)

then ψ will be less than zero for some combination of (µ, ϕ).

This possibility for a negative value suggests some kind of slope limiter. When ψm
1 is too large we want to

scale it back. The amount to scale it by is given in the modified reconstruction

ψ =
1

2
√
π
ψ0

0 +
1

2
θ1

√

3

π
µ+

√

3

2π
θ2ψ

1
1e

−iϕ
√

1 − µ2, (12)

with

θ1 = min
(

ψ0
0√

3|ψ0
1|
, 1

)

, (13)

and

θ2 = min
(

ψ0
0√

6
∣

∣ψ1
1

∣

∣

, 1

)

. (14)

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

3/14



R.G. McClarren, C.D. Hauck, and R.B. Lowrie

This reconstruction guarantees that ψ is positive.

We can cast the limited reconstruction of Eq. (12) as a filter by defining α as

α =
1 − θ

22k
, (15)

where the unadorned θ is the minimum of θ1 and θ2. With this definition of α we then apply the filter as in
Eq. (8).

One important property of this filter is that it only is applied where it is needed, i.e. in regions where the
angular flux can be negative—when θ = 1 the filter does nothing. Also, in the diffusion limit it should not
have an effect. This can be seen by the fact that in the diffusion limit ψm

1 is an order ε quantity whereas ψ0
0

is order one, so that θ will be one.

There is a drawback to this filter in that it limits the PN equations wavespeed to the P1 wavespeed, v/
√

3
where v is the particle speed. This is a result of the hard limit we place on the size of ψm

1 . For higher
order PN expansions, there are higher moments that can create a positive reconstruction with ψm

1 outside
the bounds of Eqs. (5) and (6). We believe that the reconstruction could be modified to ensure that the P3

expansion is positive. This would require devising conditions where a cubic is positive and we have not
been successful to date in deriving such a condition. Even higher PN expansions could be modified to give
a positive reconstruction, though we believe as the order increases deriving positivity constaints becomes
increasingly more difficult (and tedious). Finally, we point out that the slow wavespeed could be remedied
by employing a P1/3 correction that adjusts the P1 wavespeed to be v [9].

3.2. Material Property Dependent Filter

The second filter we discuss does not explicitly guarantee a positive reconstruction of ψ, rather it imposes a
filter in parts of the problem where the material interaction is weak. This filter writes α as

α =
ω

(N2σtL+ 1)2
, (16)

where N is the order of the PN expansion, σt is the total macroscopic cross-section of the material, L is
some characteristic length, and ω is a positive number.

This filter has the property that as the order of the expansion increases, the filter affects the solution less.
Therefore, as N → ∞ the solution does still converge to the transport solution. Moreover, this filter does
not affect the diffusion limit: when σt is an O(1/ε) quantity, then α = 1 + O(ε2). Perhaps the biggest
upside to this filter is that it is linear in ψm

l . Unlike the filter based on the P1 reconstruction, this filter can
be implemented in a straightforward manner.

At low expansion orders, for example P1, this filter is strong is streaming regions. When σt = 0 for N = 1,

ψ̃m
1 =

1

1 + 4ω
ψm

l , (17)

regardless if the solution “needs” to be filtered or not. The other drawback to this filter is that it has a free
parameter, ω. Though this parameter gives flexibility to increase or decrease the filter strength, it would be
better to have a prescribed value that guarantees positivity.
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4. THE SPHERICAL HARMONICS EQUATIONS

To show how we implement the filtered expansion, we begin with the equation for the time dependent
transport of neutral particles,

1

v

∂ψ

∂t
+ Ω̂ · ∇ψ = S, (18)

where ψ(x, Ω̂, v, t) is the angular flux, v is the particle speed, Ω̂ is the direction of flight variable, σt is
the macroscopic interaction cross-section of the material, and S is a source function that takes into account
the material-particle interaction, such as a scattering source. Also, we will be dealing with 2-D Cartesian
geometry so that ∇ = ( ∂

∂x ,
∂
∂z ). We then expand Ω̂ in spherical harmonics functions as discussed above to

get the system

1

v

∂ψm
l

∂t
+

1

2

∂

∂x

(

−Cm−1

l−1
ψm−1

l−1
+Dm−1

l+1
ψm−1

l+1
+ Em+1

l−1
ψm+1

l−1
− Fm+1

l+1
ψm+1

l+1

)

+
∂

∂z

(

Am
l−1ψ

m
l−1 +Bm

l+1ψ
m
l+1

)

+ σtψ
m
l = Sm

l for l = 1 . . . n, m = 1 . . . l (19a)

and
1

v

∂ψ0
l

∂t
+
∂

∂x

(

E1
l−1ψ

1
l−1 − F 1

l+1ψ
1
l+1

)

+
∂

∂z

(

A0
l−1ψ

0
l−1 +B0

l+1ψ
0
l+1

)

+σtψ
0
l = S0

l for l = 0 . . . n, (19b)

where

Am
l =

√

(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Bm

l =

√

(l −m)(l +m)

(2l + 1)(2l − 1)

Cm
l =

√

(l +m+ 1)(l +m+ 2)

(2l + 3)(2l + 1)
Dm

l =

√

(l −m)(l +m− 1)

(2l + 1)(2l − 1)

Em
l =

√

(l −m+ 1)(l −m+ 2)

(2l + 3)(2l + 1)
Fm

l =

√

(l +m)(l +m− 1)

(2l + 1)(2l − 1)
.

For the PN method the scalar flux, φ =
∫

4π dΩ̂ψ, is given by φ = 2
√
πψ0

0 , and the number of unknowns in
the PN equations is 1

2
(n2 + 3n) + 1. The initial conditions for PN are given by

ψm
l (x) =

∫

4π
dΩ̂Y m∗

l (Ω̂)Ψ(x, Ω̂). (20)

The boundary conditions we will use are ghost cell boundary conditions [5, 7] that are equivalent to the
Mark boundary condition.

4.1. Numerical Method

To solve Eqs. (19) we will use a linear discontinuous Galerkin method for the spatial discretization and
a semi-implicit time integration method [10]. This approach has been shown to be robust in the diffusion
limit, and it gives a straightforward means to apply our filters.

We apply the filters after each time step by computing α in each spatial cell and then scaling ψm
l to get ψ̃m

l

as in Eq. (8). This approach is simple in that it allows us to treat any nonlinearity in the filter explicitly. How
to deal with nonlinear filters with implicit solvers is an open question that we leave to future work, though
we note that the filter given in Sec. 3.2 is linear and could be used with an implicit solver. We use ω = 1/3
for the material-based filter.
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4.2. Sources

We present numerical results for two types of problems: linear problems with isotropic scattering and non-
linear transport problems where the background material emits particles as a blackbody source.

4.2.1. Isotropic Scattering

For problems of linear transport with isotropic scattering and only one particle speed, the source function S
becomes

S =
σs
4π
φ− σtψ, (21)

where σs is the scattering macroscopic cross-section, and σt is the total macroscopic cross-section. This
source makes

S0
0 = −σaψ

0
0, (22)

Sm
l = −σtψ

m
l , l > 0. (23)

4.2.2. Radiative Transfer Problems

In problems of the radiative transfer of grey x-rays [2] the source term is given by

S = −σa

(

ψ − acT 4

4π

)

, (24)

where a = 0.01372 GJ cm−3 keV−4 is the radiation constant, c = 2.998 × 1010 cm/s is the speed of light,
σa is the absorption macroscopic cross-section, and the temperature T is governed by

Cv
∂T

∂t
= σa

(

φ− acT 4
)

. (25)

The moments of S are then

S0
0 = −σa

(

ψ0
0 − acT 4

2
√
π

)

, (26)

Sm
l = −σaψ

m
l , l > 0, (27)

and Eq. (25) is, in terms of ψ0
0 ,

Cv
∂T

∂t
= σa

(

2
√
πψ0

0 − acT 4
)

. (28)

5. NUMERICAL RESULTS

The first problem we solve is a linear transport problem as described in Sec. 4.2.1. This problem has an
infinite line source pulsed at the origin at time 0. The material has σt = σs = 1 and the particle speed
is v = 1. There is an analytic transport solution to this problem given by Ganapol [11]. This is sort of
a pathological problem due to the presence of a singularity in the solution at x/t = 1. Nevertheless, this
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Figure 1. Solutions to the pulsed line source problem at t = 1 using several methods.
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Figure 2. Comparison of solutions to the pulsed line source problem and t = 1.

solution shows that the standard PN expansion can become negative (indeed the solution to the standard
PN equations for this problem has a negative singularity).

In Fig. 1, standard PN , filtered PN , and SN solutions are compared on the line source problem at t = 1.
Our numerical solutions used ∆x = 0.01, 0.1 for the t = 1 and t = 10 solutions respectively. The
difficulty in solving this problem is apparent in the figure. The P7 solution has large amplitude waves that
go negative, and the S8 solution has strong ray effects (though they look like “dot” effects on this problem).
The two filtered spherical harmonics solutions both remain positive. The material-based filter does not have
waves in the solution and is propagating information at nearly the correct speed. The slope-limiter filter
moves information too slowly and does demonstrate wave-like behavior. These solutions are compared
to Ganapol’s transport solution in Fig. 2. At this early time none of the numerical solutions adequately
capture the transport solution. The solutions at a later time, t = 10, are shown in Fig. 3, where the P7

and S8 solutions give nearly the same results as the transport solution. The material-based filter and the
slope-limiter filter are not as accurate. The slope-limiter filter has not moved information far enough into
the problem, causing the solution near the origin to be too high. The material-based filter is also slightly too
high near the origin. Despite these shortcomings of the filtered solutions we note that the solution at t = 10
was arrived at without negativity or large wave (or ray) effects along the way.

The next problem that we solve is a radiative transfer problem first suggested in alternate form by Brunner
[12]. This problem is a simplified hohlraum from an inertial confinement fusion experiment and is dia-
grammed in Fig. 4. A source of radiation is present on the left of the problem. This radiation flows into the
problem and heats the block at the center.

The radiation field from this problem for different methods is shown in Fig.5. The radiation is measured
by the radiation temperature, Trad = 4

√

φ/ac. We compare the solution for our filtered spherical harmonics
approximations to implicit Monte Carlo (IMC) [13], flux-limited diffusion, and S8 calculations. The implicit
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Figure 3. Comparison of solutions to the pulsed line source problem and t = 10.
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Figure 4. Layout for the 2-D hohlraum problem. The blue regions have σa = 100T−3 cm−1 for T in keV.
The white regions have σa = 0. Also, Cv = 0.3 GJ/cm3-keV.
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Monte Carlo calculations used 106 particles per time step with a time step size of 10−2 ns and 200 mesh
cells per direction. The flux-limited diffusion solution used Larsen’s flux limiter [14] with n = 2 and 200
mesh cells in each direction. Our deterministic transport solutions, PN and SN used 100 cells per direction.

In Fig. 5 we compare several methods to solve the holhraum problem. For this problem the IMC solution
is the most correct in terms of transporting radiation energy in a physically correct manner. Conversely, the
flux-limited diffusion solution is the least correct because it allows radiation to flow around the block in the
center of the problem. We do not show a P7 solution to this problem because the P7 radiation energy became
negative and drove the material temperature negative causing the calculation to fail. The solution to the P7

equations with the slope-limiter filter appears to be similar to the IMC solution except that there is slightly
more radiation to the right of the block than in the IMC solution. The P7 solution with the material-based
filter has not moved the radiation far enough into the problem. This defect is mitigated by going to P11 with
the material-based filter.

To better compare the methods we look at the radiation temperature along the line at y = 0.125 cm in Fig. 6
and x = 0.85 cm in Fig. 7. In Fig. 6 we see that the P7 solution with the slope-limiter filter is above the
IMC solution with the S8 below the IMC solution. The material-based filter solutions dip below the IMC
solution; the P7 version of this filter is far below the IMC solution near the right edge of the problem, and
the P11 solution is closer to IMC but still below S8. These comparisons hold on the right of the block as
shown in Fig. 7 where the slope-limiter based filter solutions is higher than IMC, with the material-based
filter solutions are below IMC.

The material temperatures from different methods are compared in Fig. 8. In this figure we can see ray
effects present in the S8 solution in the hot spots present on the right wall and the right side of the block.
The P7 solution using the filter based on a linear reconstruction appears to be the closest to the IMC solution.
The solutions using the material-based filter do not have enough heating on the right side of the problem
compared to IMC.

6. CONCLUSION

We have presented a general framework for developing filters for spherical harmonics approximations. We
also developed two filters: one that guaranteed positivity using a limiter based on the P1 expansion, and
one that enforced a decay in the expansion coefficients based on the material properties and the order of
expansion. On the pulsed line source problem both filters gave positive solutions, however, both solutions
also did not capture the transport solution at late times. On a multi-material problem of thermal radiative
transfer the P7 solution using a filter based on a slope limiter applied to the P1 reconstruction was nearly as
accurate as the S8. This is significant because the filtered solution did not have negativite energies or ray
effects. On the same problem the material-based filter was not as accurate as S8 even when P11 was used.

We would like to again emphasize that the filters presented in this study are not likely the best filters for
transport. Nevertheless, we believe that filters are a way to remove the drawbacks of the spherical harmonics
equations. Possible directions for future work include a filter based on a positive P3 reconstruction, though
this is certainly not the only way forward.
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(a) Implicit Monte Carlo
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(b) Flux-limited Diffusion
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(c) P7 Slope Limited Filter
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(d) P7 Material Filter
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(e) P11 Material Filter
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Figure 5. Radiation temperature solutions the hohlraum problem at t = 1 ns.
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Figure 6. Radiation temperatures for the hohlraum problem at y = 0.125 cm.
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Figure 7. Radiation temperatures for the hohlraum problem at x = 0.85 cm.
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(c) P7 Slope Limited Filter
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Figure 8. Material temperature solutions the hohlraum problem at t = 1 ns.
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